Ranking Distillation: Learning Compact Ranking Models With High Performance for Recommender System Jiaxi Tang, Ke Wang School of Computing Science, Simon Fraser University **Training Paradigm of Ranking Distillation Experimental Setup** Inspired by KD, we use a well-trained teacher model to provide more • *Task*: Sequential Recommendation training instances to make a student model perform better. For a certain query (user profile), we use the top-K ranked documents • Datasets: Gowalla & Foursquare (items) as the extra positive training instances. • Base Model: Fossil & Caser Ground-truth • Baselines: Student Model: M_S Document Labels: y • *Model-T: Teacher model* Given Query q • *Model-S: Student model* Compute Ranking Labeled • Model-RD: Student model trained with ranking distillation Loss: \mathcal{L}^{R} Document Set O **Evaluation Metrics:** Compute Distillation Teacher Model: M_T Precision@n $(n \in \{3, 5, 10\})$ Loss: \mathcal{L}^{D} 1) (well-trained) Unlabeled 2) nDCG@n ($n \in \{35, 10\}$) Document Model Predicted Top-K 3) Mean Average Precision (MAP) Set $\overline{\mathcal{O}}$ Ranking: $\pi_{1..K} = (\pi_1, \pi_2 ... \pi_K)$ **Forward Propagation** Traditional Module **Backward Propagation Distillation Module Experimental Results** • Evaluation on model efficiency: Weighted Point-wise Distillation Loss Generating a recommendation list for every user. Models with less parameters has less inference time cost. The distillation loss L^D is formulated as a weighted point-Label Distribution wise loss: Learns to $\mathcal{L}^{D}(\boldsymbol{\pi}_{1..K}, \hat{\boldsymbol{y}}) = -\sum_{r=1}^{N} w_{r} \cdot \log(P(rel = 1|\hat{y}_{\pi_{r}}))$ $\pi_{1..k}$: teacher's top-K minimize ranked items KL-Label Distribution divergence \hat{y} : student's prediction $= -\sum_{r=1}^{\infty} w_r \cdot \log(\sigma(\hat{y}_{\pi_r})),$ $\sigma(\cdot)$: sigmoid function Weighting by position importance w^a

Abstract

- We try to make effective but expensive model to be compact while still perform well.
- We propose a training paradigm called *ranking distillation* for learning compact ranking models with high performances.
- We use our method on **Recommender System**, a typical ranking problem.
- Experiments on real world datasets demonstrate the effectiveness of our proposed method.

Knowledge Distillation

- For image classification, KD first train a teacher model from dataset with many parameters to achieve high performance.
- Then KD train a small student model from the same dataset and the teacher model.
- Eg. For a cat image, a well-trained teacher model also supervise the student model to predict **tiger**.

Effectiveness vs. Efficiency

- For a specific ranking model, there are typically two ways to make it perform better:
 - 1. By having more parameters until the model get overfitted. (more flexibility and expressiveness)
 - 2. By using more data to train the model. (more generalizable and robust for future data)

Exponentially decayed function, with hyperparameter λ to control the decay speed.

Assumption: Top ranked items from teacher's prediction are more *correlated* to the query and the ground-truth positive item

$$w_r^a \propto e^{-r/\lambda}$$
 and $\lambda \in$

Weighting by ranking discrepancy w^{D} Non-negtive function to measure how well a student learned from its teacher, with hyperparameter μ to control the pen. Assumption: During the training process, we should have a dynamic weight to upweight the erroneous parts in distillation loss, and downweight the parts that already learned perfectly.

 $w^{\beta} = \tanh(\mu(\text{student's rank} - \text{teacher's rank}))$

	Teacher's rank	Student's rank	
π_1	1	1	\mathcal{L}^{I}
π_2	2	5	
π_3	3	156	

 $\in \mathbb{R}^+$

 $w_1^b * \log(\hat{y}_{\pi_1})$ $w_2^b * \log(\hat{y}_{\pi_2})$ $- \rightarrow w_3^b >> w_2^b > w_1^b$ $w_3^b * \log(\hat{y}_{\pi_3})$

Datasets	Model	Time (CPU)	Time (GPU)	#Params	Ratio
	Fossil-T	9.32s	3.72s	1.48M	100%
Corrollo	Fossil-RD	4.99s	2.11s	0.64M	43.2%
Gowalia	Caser-T	38.58s	4.52s	5.58M	100%
	Caser-RD	18.63s	2.99s	2.79M	50.0%
	Fossil-T	6.35s	2.47s	1.01M	100%
Foursquare	Fossil-RD	3.86s	2.01s	0.54M	53.5%
rouisquare	Caser-T	23.89s	2.95s	4.06M	100%
	Caser-RD	11.65s	1.96s	1.64M	40.4%

• Evaluation on model effectiveness Models with ranking distillation, Fossil-RD and Caser-RD, always has statistically *significant improvements* over the student-only models, Fossil-S and Caser-S

The performance of the models with ranking distillation, Fossil-RD and Caser-RD, *has no significant degradation* from that of the teacher models

Gowalla							
Model	Prec@3	Prec@5	Prec@10	nDCG@3	nDCG@5	nDCG@10	MAP
Fossil-T	0.1299	0.1062	0.0791	0.1429	0.1270	0.1140	0.0866
Fossil-RD	0.1355	0.1096	0.0808	0.1490	0.1314	0.1172	0.0874
Fossil-S	0.1217	0.0995	0.0739	0.1335	0.1185	0.1060	0.0792
Caser-T	0.1408	0.1149	0.0856	0.1546	0.1376	0.1251	0.0958
Caser-RD	0.1458	0.1183	0.0878	0.1603	0.1423	0.1283	0.0969
Caser-S	0.1333	0.1094	0.0818	0.1456	0.1304	0.1188	0.0919
Fossil-S Caser-T Caser-RD Caser-S	0.1217 0.1408 0.1458 0.1333	0.0995 0.1149 0.1183 0.1094	0.0739 0.0856 0.0878 0.0818	0.1335 0.1546 0.1603 0.1456	0.1185 0.1376 0.1423 0.1304		0.1060 0.1251 0.1283 0.1188

Foursquare							
Model	Prec@3	Prec@5	Prec@10	nDCG@3	nDCG@5	nDCG@10	MAP
Fossil-T	0.0859	0.0630	0.0420	0.1182	0.1085	0.1011	0.0891
Fossil-RD	0.0877	0.0648	0.0430	0.1203	0.1102	0.1023	0.0901
Fossil-S	0.0766	0.0556	0.0355	0.1079	0.0985	0.0911	0.0780
Caser-T	0.0860	0.0650	0.0438	0.1182	0.1105	0.1041	0.0941
Caser-RD	0.0923	0.0671	0.0444	0.1261	0.1155	0.1076	0.0952
Caser-S	0.0830	0.0621	0.0413	0.1134	0.1051	0.0986	0.0874