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Abstract Training Paradigm of Ranking Distillation Experimental Setup

* Inspired by KD, we use a well-trained teacher model to provide more * Task: Sequential Recommendation
training instances to make a student model perform better.

For a certain query (user profile), we use the top-K ranked documents
(items) as the extra positive training instances.

We try to make effective but expensive model to be

compact while still perform well. .
We propose a training paradigm called ranking

distillation for learning compact ranking models with high
performances.

We use our method on Recommender System, a typical

Datasets: Gowalla & Foursquare

Base Model: Fossil & Caser
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* Forimage classification, KD first train a teacher model
from dataset with many parameters to achieve high
performance.

Then KD train a small student model from the same
dataset and the teacher model.

Eg. For a cat image, a well-trained teacher model also
supervise the student model to predict tiger.

Traditional Module
Distillation Module

— Forward Propagation
— Backward Propagation = -—-—-

Experimental Results

* Evaluation on model efficiency:
Generating a recommendation list for every user.
Models with less parameters has less inference time cost.

Weighted Point-wise Distillation Loss

» The distillation loss L” is formulated as a weighted point-

'Label Distribution4 .
~ wise loss:
H :Leams to D K Datasets | Model (’gll::]e) (’211:15) #Params Ratio
minimize L7(m. k.Y) = - Z wr - log(P(rel = 1{gx,)) | T1.k: teachers top-K Fossil-T | 9.32s  3.72s  148M  100%
) - ranked items ) ' ' ' ’
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Exponentially decayed function, with hyperparameter A to control the
decay speed.

Assumption: Top ranked items from teacher’s prediction are more .
correlated to the query and the ground-truth positive item

Effectiveness vs. Efficiency

Evaluation on model effectiveness
Models with ranking distillation, Fossil-RD and Caser-RD, always has

statistically significant improvements over the student-only models,
Fossil-S and Caser-S

 For a specific ranking model, there are typically two ways
to make it perform better:

/A and AeR*

* Weighting by ranking discrepancy w”
Non-negtive function to measure how well a student learned from its
teacher, with hyperparameter u to control the pen.

a
1. By having more parameters until the model get W, &€
overfitted. (more flexibility and expressiveness)
2. By using more data to train the model.

(more generalizable and robust for future data)

The performance of the models with ranking distillation, Fossil-RD
and Caser-RD, has no significant degradation from that of the
teacher models
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