

Ranking Distillation: Learning Compact Ranking Models With High Performance for Recommender System

Jiaxi Tang and Ke Wang Simon Fraser University jiaxit@sfu.ca, wangk@cs.sfu.ca

Motivation

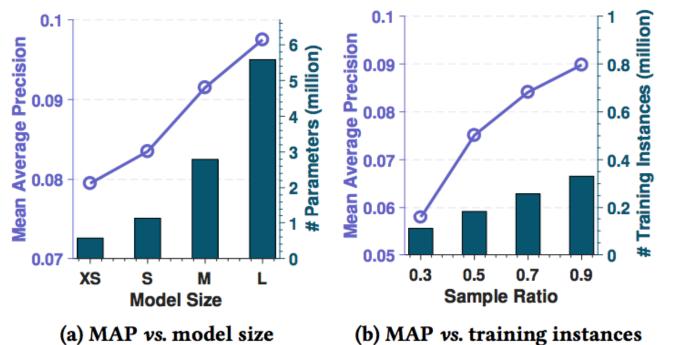
More Powerful

Model with Ranking Distillation Medium-size Model *Too bad result!* Small-size Model

Large-size Model *Cannot afford!*

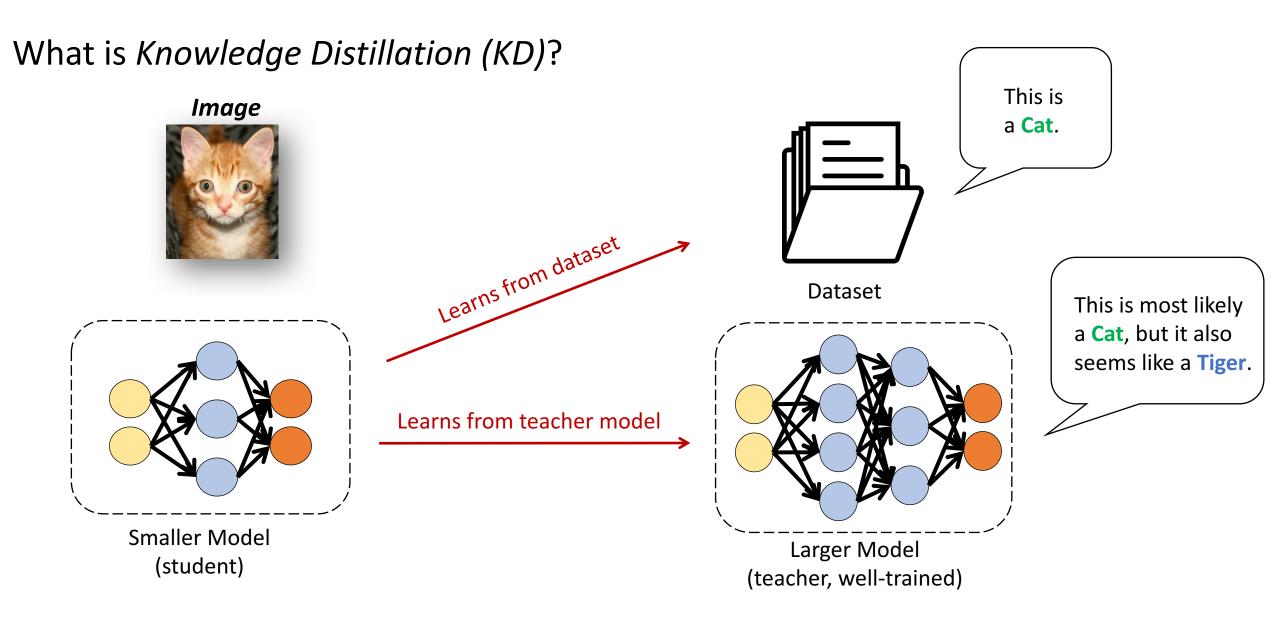
More Serving Cost

Motivation

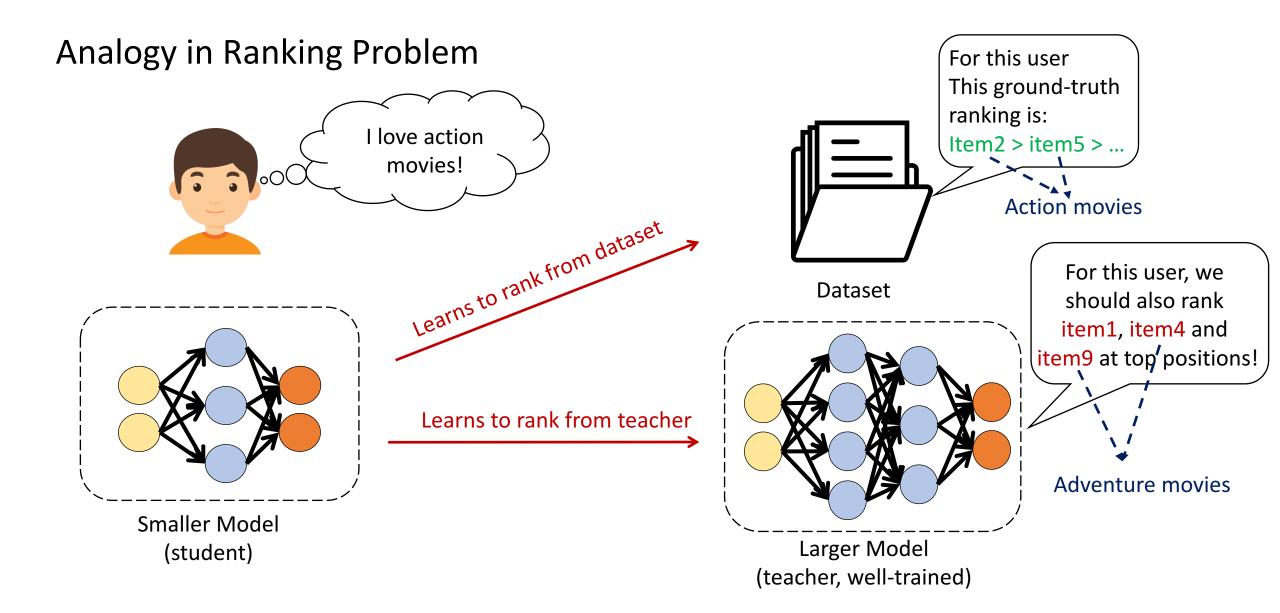


(a). Lager model size -> Better performance Hard to serve the model for inefficiency!

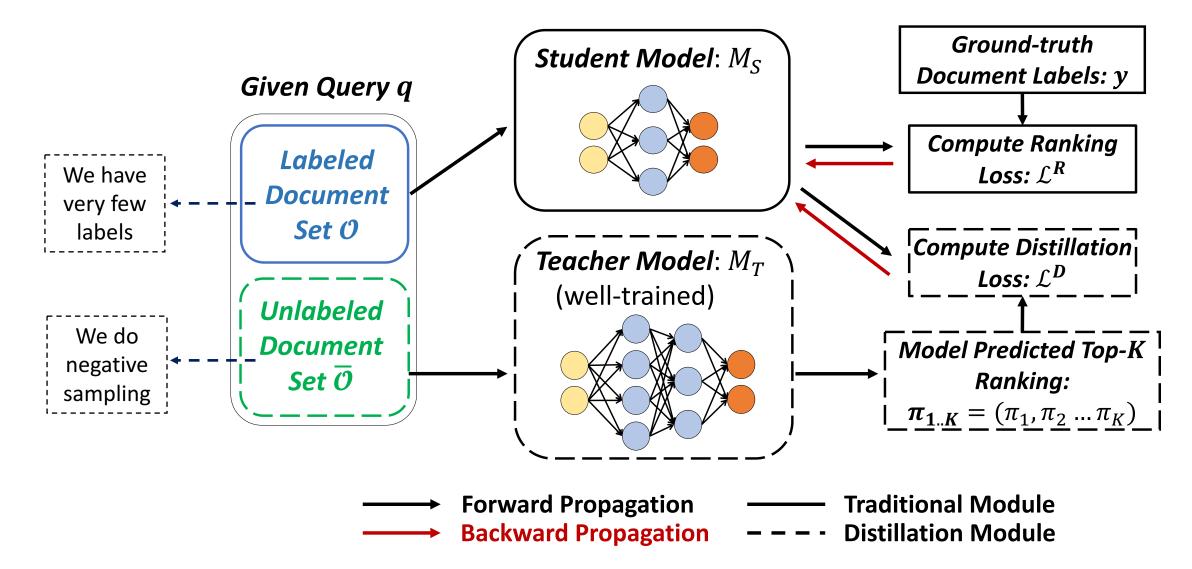
(b). More training instances -> Better performance *Not always available!*



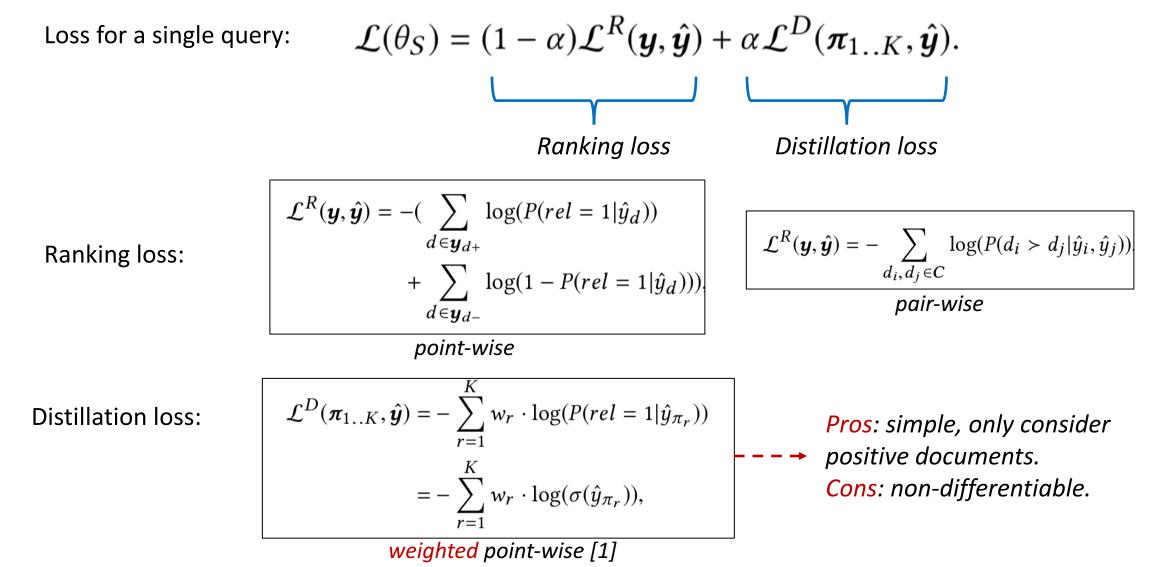
Makes the student model more robust, generalizable and thus perform better.



Ranking Distillation



Ranking Distillation

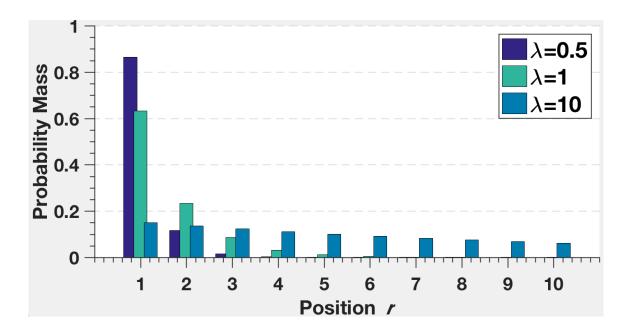


Weighting by position importance w^a

Assumption: The teacher predicted unlabeled documents at top positions are more correlated to the query and are more likely to the positive ground-truth documents.

An empirical weight following a exponentially decayed function[1]:

$$w_r^a \propto e^{-r/\lambda}$$
 and $\lambda \in \mathbb{R}^+$.



[1] Improving pairwise learning for item recommendation from implicit feedback. Stefen Rendle and Christoph Freudenthaler. 2014. WSDM 2014.

Weighting by ranking discrepancy w^b

Assumption: During the training process, we should have a dynamic weight to upweight the erroneous parts in distillation loss, and downweight the parts that already learned perfectly.

Example. n_1 1 1 1 + $w_2^b * \log(\hat{y} + w_2^b)$			Teacher's rank	Student's rank	
n_2 2 3 15 100	Example:	π_1	1	1	$\mathcal{L}^D = w_1^b * \log(\hat{y}_{\pi_1})$
π_3 3 156 $+ w_3^b * \log(\hat{y}_{\pi_3})$		π_2	2	5	$+ w_2^b * \log(\hat{y}_{\pi_2})$
		π_3	3	156	$+ w_3^b * \log(\hat{y}_{\pi_3})$

How do we know student's rank without computing relevance scores for all items?

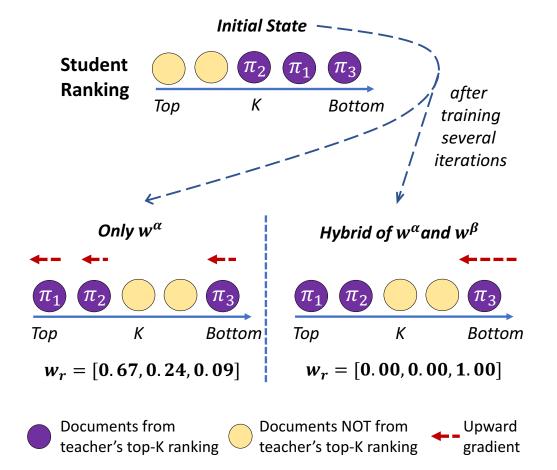
To get a documents approximated rank in a list of N documents, we can randomly sample $\epsilon << N$ documents in this list, and:

Estimated rank = $\lfloor n \times (N - 1)/\epsilon \rfloor + 1$

where **n** is the number of documents whose scores are greater than the given documents score.

 $w_3^b = \tanh(\mu \times (156 - 3))$ -----

Ranking Distillation by both weights



- 1. Choose a proper *K*, *e.g. K*=3
- 2. Using w^a during the first few iterations
- 3. Using hybrid weights then.

```
w_{i} = w_{i}^{\alpha} \cdot w_{i}^{\beta}
\downarrow \text{ normalize}
\downarrow \text{ (optional)}
w_{i} \propto w_{i}^{\alpha} \cdot w_{i}^{\beta}
```

Experimental results

- Task: Sequential Recommendation, *query -> user & her/his sequence document -> item*
- Datasets: Gowalla & Foursquare
- Base Model: *Fossil*[1] & *Caser*[2]
- Baselines:
 - Model-T: Teacher model
 - Model-S: Student model
 - Model-RD: Student model trained with *ranking distillation*

Datasets	#use	#users		avg. actions per user			
Gowalla	13.1	k	14.0k	40.74			
Foursquare	e 10.1	k	23.4k	30.16			
Datasets	Model	Time (CPU)	Time (GPU)	#Params	Ratio		
	Fossil-T	9.32s	3.72s	1.48M	100%		
Gowalla	Fossil-RD	4.99s	2.11s	0.64M	43.2%		
Gowalia	Caser-T	38.58s	4.52s	5.58M	100%		
	Caser-RD	18.63s	2.99s	2.79M	50.0%		
	Fossil-T	6.35s	2.47s	1.01M	100%		
Equation	Fossil-RD	3.86s	2.01s	0.54M	53.5%		
Foursquare	Caser-T	23.89s	2.95s	4.06M	100%		
	Caser-RD	11.65s	1.96s	1.64M	40.4%		

Fusing similarity models with markov chains for sparse sequential recommendation. Ruining He and Julian McAuley, 2017, ICDM
 Personalized Top-N Sequential Recommendation via Convolutional Sequence Embedding. Jiaxi Tang and Ke Wang, 2018, WSDM

Experimental results

Gowalla								
Model	Prec@3	Prec@5	Prec@10	nDCG@3	nDCG@5	nDCG@10	MAP	
Fossil-T	0.1299	0.1062	0.0791	0.1429	0.1270	0.1140	0.0866	
Fossil-RD	0.1355	0.1096	0.0808	0.1490	0.1314	0.1172	0.0874	
Fossil-S	0.1217	0.0995	0.0739	0.1335	0.1185	0.1060	0.0792	
Caser-T	0.1408	0.1149	0.0856	0.1546	0.1376	0.1251	0.0958	
Caser-RD	0.1458	0.1183	0.0878	0.1603	0.1423	0.1283	0.0969	
Caser-S	0.1333	0.1094	0.0818	0.1456	0.1304	0.1188	0.0919	
Foursquare								
Model	Prec@3	Prec@5	Prec@10	nDCG@3	nDCG@5	nDCG@10	MAP	
Fossil-T	0.0859	0.0630	0.0420	0.1182	0.1085	0.1011	0.0891	
Fossil-RD	0.0877	0.0648	0.0430	0.1203	0.1102	0.1023	0.0901	
Fossil-S	0.0766	0.0556	0.0355	0.1079	0.0985	0.0911	0.0780	
Caser-T	0.0860	0.0650	0.0438	0.1182	0.1105	0.1041	0.0941	
Caser-RD	0.0923	0.0671	0.0444	0.1261	0.1155	0.1076	0.0952	
Caser-S	0.0830	0.0621	0.0413	0.1134	0.1051	0.0986	0.0874	

Summarize: Models trained with RD have similar performance with their teachers.

Tried but failed

- 1. Using the Top-*K* documents from teacher model as positive documents, and using the Bottom-*K* documents as negative documents. Then apply point-wise, pair-wise, list-wise distillation loss.
 - Possible reason: negative documents can be anywhere except Top-K, so we don't need to care too much about them.
- 2. Using the pair-wise distillation loss within teacher's Top-*K* documents, to make the partial order as correct as possible.
 - Possible reason: the gradient contains both up-wards gradient and down-ward gradient, which cause issues in trainability.

-- It is 'good' that teacher's ranking and student's ranking at top positions are not perfectly matched. e.g. teacher's ranking: d1 > d2 > d3 > ..., student's ranking: d2 > d3> d1 > ...

Summarization

- 1. We use the Top-*K* unlabeled documents from teacher model's ranking as positive documents, and use a smaller student to learn to rank these documents at higher positions.
- 2. We propose two different weighting schemes to boost the training process.
- 3. The proposed 'Ranking Distillation' can be regarded as:
 - A knowledge transfering method
 - A semi-supervised method
 - A data-augmentation method

Q&A