Google

Improving Training Stability for Multitask
Ranking Models in Recommender Systems

Jiaxi Tang™, Yoel Drori?, Daryl Chang™3, Maheswaran Sathiamoorthy’,

Justin Gilmer', LiWei®, Xinyang Yi', Lichan Hong', Ed H. Chi'

'Google Deepmind 2Google Research 3Google Inc
(* Equal contribution to the work)

Model Training Instability: An increasingly important issue

Google

Affected many models at YouTube

Becoming a core challenge in Vision / LLMs / etc

5.1 Training Instability

] spikes in the loss roughly 20 times during training, despite the fact that
se spikes occurred at highly irregular intervals, sometimes happening late
= t when training the smaller models. Due to the cost of training the largest
model, we were not able to determine a principled strategy to mitigate these spikes.

Instead, we found that a simple strategy to effectively mitigate the issue: We re-started training from a
checkpoint roughly 100 steps before the spike started, and skipped roughly 200-500 data batches, which cover
the batches that were seen before and during the spike. With this mitigation, the loss did not spike again at
the same point. We do not believe that the spikes were caused by “bad data” per se, because we ran several
ablation experiments where we took the batches of data that were surrounding the spike, and then trained on
those same data batches starting from a different, earlier checkpoint. In these cases, we did not see a spike.
This implies that spikes only occur due to the combination of specific data batches with a particular model
parameter state. In the future, we plan to study more principled mitigation strategy for loss spikes in very
large language models.

2.5 Training Processes

Here we describe significant training process ad-
Jjustments that arose during OPT-175B pre-training.

Hardware Failures We faced a significant num-
ber of hardware failures in our compute cluster
while training OPT-175B. In total, hardware fail-
ures contributed to at least 35 manual restarts and
the cycling of over 100 hosts over the course of 2
months. During manual restarts, the training run
was paused, and a series of diagnostics tests were
conducted to detect problematic nodes. Flagged
nodes were then cordoned off and training was re-
sumed from the last saved checkpoint. Given the
difference between the number of hosts cycled out
and the number of manual restarts, we estimate 70+
automatic restarts due to hardware failures.

Loss Divergences | Loss divergences were also an

2 run. When the loss diverged,
we found that lowering the learning rate and restart-
ing from an earlier checkpoint allowed for the job
to recover and continue training. We noticed a cor-
relation between loss divergence, our dynamic loss

Training instability is common in LLMs like Pal)V (left) and OFT (right).

Cnanges DAy CIEAT SLLECLS ON VALUAUON PEIPIEXILY.

scalar crashing to 0, and the /?-norm of the activa-
tions of the final layer spiking. These observations
led us to pick restart points for which our dynamic
loss scalar was still in a “healthy” state (> 1.0),
and after which our activation norms would trend
downward instead of growing unboundedly. Our
empirical LR schedule is shown in Figure 1. Early
in training, we also noticed that lowering gradient
clipping from 1.0 to 0.3 helped with stability; see
our released logbook for exact details. Figure 2
shows our validation loss with respect to training
iterations.

Other Mid-flight Changes We conducted a
number of other experimental mid-flight changes
to handle loss divergences. These included: switch-
ing to vanilla SGD (optimization plateaued quickly,
and we reverted back to AdamW); resetting the dy-
namic loss scalar (this helped recover some but not
all divergences); and switching to a newer version
of Megatron (this reduced pressure on activation
norms and improved throughput).

https://arxiv.org/pdf/2204.02311.pdf
https://arxiv.org/pdf/2205.01068.pdf

Highlights of this Work

e We show some implications and consequences of unstable model training.
o Suggesting the importance and difficulties of the problem in real-world recommender systems.

e We present case studies about model changes that had led to more training instabilities.
o Suggesting the prevalence of the problem.

e We provide our understanding on the root cause of the problem.

e We propose an effective approach (called Clippy) to overcome the problem.
o By closely examining the training dynamics of a real ranking model at YouTube.
o Clippy is deployed in several ranking models for YouTube recommendations.

Google

Agenda
e Background and Motivation
e Understanding the Root Cause
e Proposed Solution — Clippy

e Empirical Studies

Google

1. Background and Motivation

Background: Multitask Ranking Model at YouTube

Google

Multitask

©)

©)

Fully shared bottom OR
Softly shared bottom (MoE)

Sequential Training

o Training data visitation in time order
Optimization

o Large batch size + High learning rate

o Optimizer=Adagrad

Task 1 Prediction

T

Task 1 Layer(s)

Task N Prediction

T

Task N Layer(s)

(Top) Shared Layer

Shared

Layer(s)

Input features and Embeddings]

Figure: An general illustration of the ranking
model used in recommender systems

Problem: Training Instability

e Symptom: Loss divergence Symptom:

o Training loss shoot up — All metrics become worse Loss diverges to large values
' — Model becomes useless

—— model-a ' !

14~ —— model-b '
%
313
-
=
g 1.2

t \\L

1-0 1 1

Loss begining to Loss recovered from Loss begining to
micro-diverge for model-a micro-diverge for model-a fully-diverge for model-b
Train Steps

e Two types:
o Micro loss divergence (model-a): Recoverable

Google © Fullloss divergence (model-b): Non-recoverable — model become useless

Motivation

e Important problem for Recommender Systems in industry
o Training instability can easily happen, from
m increasing model complexity
m adding more input features or tasks

m increasing convergence speed
e E.g,largerlearning rate

Common types of
model development

o And once training becomes unstable, it can
m waste a lot of training resources
m hinder (or even block) model development
m negatively affect user experience (if a bad model is served)

Google

Challenges

e Hard to reproduce

o Same model config does not always have loss divergence.
o Loss divergence does not always happen at the same time.

e Hard to detect

o Loss might diverge then recover before metrics are logged.

e Hard to measure
o No quantitative measurement of model instability.

e Ad-hoc mitigations can only fix temporarily

o Engineering: Automatically rollback; Validate model quality before serving.
o Modeling: Activation clipping; Gradient clipping.
o However, none of them can prevent us from the issue in the long-term.

Google

2. Understanding the Root Cause

We hope to investigate

Google

Root cause of the problem
o In order to come up with a more principled long-term solution.

Two research questions (omitted, but discussed in the paper)

RQ1: Why do recommendation models frequently suffer from training instability issues?
o Observations: Even small (O(1M) dense params) recommendation models can easily suffer
from the issue.

RQ2: For recommendation models, why do ranking models typically have worse
training stability than retrieval models?

Root cause of the problem

e Root cause: Step size too large when
loss curvature is steep.

e Cohenetaland Gilmer et al showed
that we should keep n < 2/ A to stabilize

model training.
o n=learning rate
o A =maximum eigenvalue of the training loss
Hessian, which describes the sharpness of
the loss curvature

Google

(a) step size n=0.09 (b) step size n=0.11

Y
%4
I”

(source) Gradient descent on a quadratic
model with eigenvalues a, = 20 and ., = 1. We
can clearly observe training instability
problems starting to occur when learning rate
n > 2la* = 2/a1=0.1.

https://arxiv.org/pdf/2103.00065.pdf
https://arxiv.org/pdf/2110.04369.pdf
https://arxiv.org/pdf/2103.00065.pdf

3. Proposed Solution — Clippy

Background: Gradient Clipping*

Clipped

Gradient L .
\ _ Aug” if "g” > A,

‘ g else.

Pros Cons

e Easytoimplement e Parameter(s) hard to tune
e Well-studied

* On the difficulty of training recurrent neural networks, Pascanu et al.

Google

Limits on
gradient norm

https://arxiv.org/pdf/1211.5063.pdf

Background: Adaptive Gradient Clipping (AGC)*

glipé)ed Limits on the ratio of
ra ient\ w 5 gradient norm / parameter norm
Pl Ilg if ”2/1,/
g—1{ gl lwl
g else .
Pros Cons
e Easytoimplement e Notinvariant under translations of 6

° Easier to tune

* High-performance large-scale image recognition without normalization, Brock et al.

Google

https://arxiv.org/pdf/2102.06171.pdf

Proposed method (Clippy)

e Similarideato AGC, but

o Controls the updates instead of gradients:

m Parameter update cannot be too large than the parameter itself.
o Uses L-infinity norm instead of L2 norm:

m More sensitive to large updates in a few coordinates.

Update
A
01
\%caled update
Parameter
%_I

X%] X%

Google >

Detailed Algorithm

Algorithm 1 Adagrad with Clippy

1:

Input: Parameter vector to optimize w; objective function £;
learning rate schedule 7;.

Input: Clippy hyperarameters: relative threshold A, and ab-
solute threshold A,}.

3: Initialize parameter vector wy.

10:
11:

fort=0toT —1do

gt = ﬁa(“%’l — obtain stochastic gradient.
Gt =Gi—1 + gl? — update accumulator
rr=g:-G, B compute updates

Arel | We |+ Aabs
nex|re|
W1 = Wy — nrorry — apply rescaled updates

end for
Return: wr

oy = min{1.0, min()} — get clipping factor

Google

4. Empirical Studies

Benchmark Setting

e Simplified version of prod Multitask Ranking model
o Subset of inputs (~200 out of ~500) + subset of tasks (5 out of 10) according to importance.
o Shared bottom w/ several hidden layers.
— allows us to focus more on research perspectives instead of irrelevant modeling details.

e Baselines
o GC [1]: Layer-wise gradient clipping, clips ||gl.
o AGC [2]: Adaptive layer-wise gradient clipping, clips llgll / [lwll.
o LAMB [3]: Adapted to Adagrad, L2-normalize update and scale it by ||w]|.

e Variants
o Models: Small /Large /Large+DCN (4]
o Learning rate: 1x or 2x

[1] On the difficulty of training recurrent neural networks, Pascanu et al.
[2] High-performance large-scale image recognition without normalization, Brock et al.
GOOQ'G [3] Large Batch Optimization For Deep Learning: Training Bert In 76 Minutes, You et al.
[4] DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems, Wang et al.

https://arxiv.org/pdf/1211.5063.pdf
https://arxiv.org/pdf/2102.06171.pdf
https://arxiv.org/pdf/1904.00962.pdf
https://arxiv.org/abs/2008.13535

Empirical Effectiveness

e Under large learning rates:

Clippy prevents loss divergence.

e Under small learning rates:

Clippy does not hurt performance.

; Methods
Model Name Metrics Naive GC AGC LAMB | Clippy

AUC (higher is better) 71.68 +013 71.73 000 71.56 o001 | 71.79 +0.00

Small RMSE (lower is better) | diverged 1.058 0002 1.059 0003 1.063 +o0.001 | 1.056 =+ 0.000
Best learning rate 2x Ix 1x 2x

AUC (higher is better) 72.07 £005 72.09 x002 72.01 £0.09 | 72.16 +0.02

Large RMSE (lower is better) | diverged 1.053 0003 1.051 +0.001 1.054 +0.002 | 1.051 =+ 0.000
Best learning rate 2x 1x 1x 2x

AUC (higher is better) 72.27 003 72.06 x008 72.05 x011 | 72.37 xo0.01

Large+DCN | RMSE (lower is better) | diverged 1.049 o001 1.051 +0.001 1.057 +0.001 | 1.047 + 0.001
1x 2x 1x 2X

Best learning rate

Google

Empirical Effectiveness (con't)

1x learning rate 2x learning rate

o ©]
s)
2 <
g
2 e e 1 N O et
!
0.0 0.2 0.4 0.6 0.8 1.0 ' 00 4« 0.2 0.4 0.6 0.8 1.0
Train Steps 1e6 / Train Steps 1€8
------- GC-Small ---- GC-Large = —— GC-Large+DCN =+ Clippy-Small ---- Clippy-Large —— Clippy-Large+DCN
1
l‘\
With 1x LR . With2x LR
e Clippy ~= GC on all model variants . e Clippy~=GConSmall/Large

. e Clippy>GConLarge+DCN
‘e GC suffered from recovering from
micro-divergence issues

Google

/10.1145/3580305.3599846

Thanks!

https://arxiv.org/abs/2302.09178

Code:

https://qithub.com/tensorflow/recommender
s/blob/main/tensorflow_recommenders/expe
rimental/optimizers/clippy_adagrad.py

Google

https://doi.org/10.1145/3580305.3599846
https://arxiv.org/abs/2302.09178
https://github.com/tensorflow/recommenders/blob/main/tensorflow_recommenders/experimental/optimizers/clippy_adagrad.py
https://github.com/tensorflow/recommenders/blob/main/tensorflow_recommenders/experimental/optimizers/clippy_adagrad.py
https://github.com/tensorflow/recommenders/blob/main/tensorflow_recommenders/experimental/optimizers/clippy_adagrad.py

