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Model Training Instability: An increasingly important issue

● Affected many models at YouTube
● Becoming a core challenge in Vision / LLMs / etc

Training instability is common in LLMs like PaLM (left) and OPT (right).

https://arxiv.org/pdf/2204.02311.pdf
https://arxiv.org/pdf/2205.01068.pdf


Highlights of this Work
● We show some implications and consequences of unstable model training.

○ Suggesting the importance and difficulties of the problem in real-world recommender systems.

● We present case studies about model changes that had led to more training instabilities.
○ Suggesting the prevalence of the problem.

● We provide our understanding on the root cause of the problem.

● We propose an effective approach (called Clippy) to overcome the problem.
○ By closely examining the training dynamics of a real ranking model at YouTube.
○ Clippy is deployed in several ranking models for YouTube recommendations.
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1. Background and Motivation



Background: Multitask Ranking Model at YouTube

● Multitask
○ Fully shared bottom OR
○ Softly shared bottom (MoE)

● Sequential Training
○ Training data visitation in time order

● Optimization
○ Large batch size + High learning rate
○ Optimizer=Adagrad

Figure: An general illustration of the ranking 
model used in recommender systems



Problem: Training Instability
● Symptom: Loss divergence

○ Training loss shoot up → All metrics become worse
Symptom: 
Loss diverges to large values 
→ Model becomes useless

● Two types: 
○ Micro loss divergence (model-a): Recoverable 
○ Full loss divergence (model-b): Non-recoverable → model become useless



Motivation

● Important problem for Recommender Systems in industry
○ Training instability can easily happen, from

■ increasing model complexity
■ adding more input features or tasks
■ increasing convergence speed

● E.g., larger learning rate

○ And once training becomes unstable, it can
■ waste a lot of training resources
■ hinder (or even block) model development
■ negatively affect user experience (if a bad model is served)

Common types of 
model development 



Challenges

● Hard to reproduce
○ Same model config does not always have loss divergence.
○ Loss divergence does not always happen at the same time.

● Hard to detect
○ Loss might diverge then recover before metrics are logged.

● Hard to measure
○ No quantitative measurement of model instability.

● Ad-hoc mitigations can only fix temporarily
○ Engineering: Automatically rollback; Validate model quality before serving.
○ Modeling: Activation clipping; Gradient clipping.
○ However, none of them can prevent us from the issue in the long-term.
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2. Understanding the Root Cause



We hope to investigate

● Root cause of the problem
○ In order to come up with a more principled long-term solution.

● Two research questions (omitted, but discussed in the paper)

RQ1:  Why do recommendation models frequently suffer from training instability issues?
○ Observations: Even small (O(1M) dense params) recommendation models can easily suffer 

from the issue.

RQ2:  For recommendation models, why do ranking models typically have worse
training stability than retrieval models?



Root cause of the problem

● Root cause: Step size too large when 
loss curvature is steep.

● Cohen et al and Gilmer et al showed 
that we should keep η < 2 / λ to stabilize 
model training.
○ η = learning rate
○ λ = maximum eigenvalue of the training loss 

Hessian, which describes the sharpness of 
the loss curvature

(source) Gradient descent on a quadratic 
model with eigenvalues 𝛼1 = 20 and 𝛼2 = 1. We 

can clearly observe training instability 
problems starting to occur when learning rate 

𝜂 > 2/𝛼∗ = 2/𝛼1 = 0.1.

https://arxiv.org/pdf/2103.00065.pdf
https://arxiv.org/pdf/2110.04369.pdf
https://arxiv.org/pdf/2103.00065.pdf
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3. Proposed Solution – Clippy



Background: Gradient Clipping*

Pros Cons

● Easy to implement
● Well-studied

● Parameter(s) hard to tune

Clipped 
Gradient

* On the difficulty of training recurrent neural networks, Pascanu et al.

Limits on 
gradient norm

https://arxiv.org/pdf/1211.5063.pdf


Background: Adaptive Gradient Clipping (AGC)*

Pros Cons

● Easy to implement
● Easier to tune

● Not invariant under translations of θ

* High-performance large-scale image recognition without normalization, Brock et al.

Clipped 
Gradient

Limits on the ratio of
gradient norm / parameter norm 

https://arxiv.org/pdf/2102.06171.pdf


Proposed method (Clippy)

● Similar idea to AGC, but
○ Controls the updates instead of gradients:

■ Parameter update cannot be too large than the parameter itself.
○ Uses L-infinity norm instead of L2 norm:

■ More sensitive to large updates in a few coordinates.



Detailed Algorithm
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4. Empirical Studies



Benchmark Setting
● Simplified version of prod Multitask Ranking model

○ Subset of inputs (~200 out of ~500) + subset of tasks (5 out of 10) according to importance.
○ Shared bottom w/ several hidden layers.

   → allows us to focus more on research perspectives instead of irrelevant modeling details.

● Baselines
○ GC [1]: Layer-wise gradient clipping, clips ||g||.
○ AGC [2]: Adaptive layer-wise gradient clipping, clips ||g|| / ||w||.
○ LAMB [3]: Adapted to Adagrad, L2-normalize update and scale it by ||w||.

● Variants
○ Models: Small / Large / Large+DCN[4]

○ Learning rate: 1x or 2x
[1] On the difficulty of training recurrent neural networks, Pascanu et al.
[2] High-performance large-scale image recognition without normalization, Brock et al.
[3] Large Batch Optimization For Deep Learning: Training Bert In 76 Minutes, You et al.
[4] DCN V2: Improved Deep & Cross Network and Practical Lessons for Web-scale Learning to Rank Systems, Wang et al.

https://arxiv.org/pdf/1211.5063.pdf
https://arxiv.org/pdf/2102.06171.pdf
https://arxiv.org/pdf/1904.00962.pdf
https://arxiv.org/abs/2008.13535


Empirical Effectiveness ● Under large learning rates: 
Clippy prevents loss divergence.

● Under small learning rates: 
Clippy does not hurt performance.



Empirical Effectiveness (con’t)

With 1x LR
● Clippy ~= GC on all model variants

With 2x LR
● Clippy ~= GC on Small / Large
● Clippy > GC on Large+DCN
● GC suffered from recovering from 

micro-divergence issues



Thanks!

DOI: 
https://doi.org/10.1145/3580305.3599846

Arxiv:
https://arxiv.org/abs/2302.09178 

Code:
https://github.com/tensorflow/recommender
s/blob/main/tensorflow_recommenders/expe
rimental/optimizers/clippy_adagrad.py 

https://doi.org/10.1145/3580305.3599846
https://arxiv.org/abs/2302.09178
https://github.com/tensorflow/recommenders/blob/main/tensorflow_recommenders/experimental/optimizers/clippy_adagrad.py
https://github.com/tensorflow/recommenders/blob/main/tensorflow_recommenders/experimental/optimizers/clippy_adagrad.py
https://github.com/tensorflow/recommenders/blob/main/tensorflow_recommenders/experimental/optimizers/clippy_adagrad.py

