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Abstract
• We study sequential recommendation problem as the

order	of	interaction	implies	that	sequential	patterns	play	
an	important	role on user’s next action.

• Under such setting, sequential patterns should be
carefully modeled, in both point-level and union-level.

• We	propose	a	Convolutional	Sequence	Embedding	
Recommendation	Model	(Caser)	to model the above two
types of sequential patterns.

• The	experiments	on	public	data	sets	demonstrated	that	
Caser	consistently	outperforms	state-of-the-art	
sequential	recommendation	methods

Capture Point-level Sequential Pattern with Vertical
Convolutional Filters
• Sliding vertically (from left to right), the vertical convolutional filters have

same height (i.e., L) and same width (i.e., 1).	
• Vertical convolutional filters are learned to aggregate the latent

embeddings of previous items.
• In other words, they are performing weighted sum over previous items’

latent representations, thus capture point-level sequential pattern.

Experimental Setup
• Datasets: 4 datasets with large Sequential Intensity is used

MovieLens, Gowalla, Foursquare and Tmall.

• Baselines (non-sequential): POP, BPR,
• Baselines (sequential): FPMC, Fossil and GRU4Rec

• Evaluation Metrics:
1) Precision@n (𝑛 ∈ {1, 5, 10})
2) Recall@n (𝑛 ∈ {1, 5, 10})
3) Mean Average Precision (MAP)

Related Works and Motivations

• Existing works model sequential pattern in point-level,
fail to model sequential pattern in union-level.

– point-level:	each	of	the	previous	actions	 influences	the	
target	action	individually,	instead	of	collectively
– union-level: several	previous	actions	jointly	influence	the	
target	action.

• Find the existence of union-level sequential pattern.

When we mine	sequential	association	rules of the form

With confidence=50% and support=5, most	of the
resulting rules	have	the	length larger than 1 (L > 1),
indicating the	existence	of	union-level	influences.

Sequential Recommendation
Given	a user’s	sequences	Su	,	recommend	a	list	of	items	that	
maximize	her/his	future	needs,	by	considering	both	general	
preferences and	sequential	patterns.

– General Preferences: represent	user’s	long	term and	static
behaviors and are unlikely to change in a short period of
time.
– Sequential Patterns:	represent	user’s	short	term	and	
dynamic behaviors	and	come	from	a	close	proximity	of	time.

Experimental Results
• Overall performance:

• Caser outperform other baselines with fewer parameters:

• Caser	best	utilizes	the	extra	information provided by
increasing number of items in the sequence:

Codes and Data are available at: http://www.sfu.ca/~jiaxit/

The network architecture of Caser
• Convolutional Neural Network (CNN) is used to capture both point-level

and union-level sequential patterns.
• By incorporating Latent Factor Model (LFM), Caser is also able to

capture user’s general preferences.

Case Studies
• Visualize the influences of Caser’s prediction when
masking out certain items within a sequence.

Sequential Patterns
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Capture Union-level Sequential Pattern with
Horizontal Convolutional Filters
• Borrow the idea of using CNN in text classification, we use convolutional

filters to search for sequential patterns.	
• Sliding horizontally (from top to bottom), the horizontal convolutional

filters are used with different height (multiple union sizes) but same
width (same to the latent dimension).

• Max	pooling	operation	on the result for extracting the	most significant
feature from	a particular filter.

The first horizontal filter	picks	up	the	union-level sequential	pattern	
“(Airport,	Hotel)	→	Great	Wall”	by	having	larger	values	in	the	latent	
dimensions	where	Airport	and	Hotel	have	larger	values.

MAP vs. latent dimensions

MAP vs. sequence length
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Network Training
• Extract every L item as input, and the next T items as targets.
• Sigmoid Negative Log-Loss with random negative sampling is used as

optimization criterion.


